Chào mừng bạn đến blog Ynghialagi.com Trang Chủ

Table of Content

Bài đăng

Cách tìm số điểm cực đại của hàm số 2022

Thủ Thuật về Cách tìm số điểm cực lớn của hàm số 2022


You đang tìm kiếm từ khóa Cách tìm số điểm cực lớn của hàm số được Update vào lúc : 2022-01-22 15:02:07 . Với phương châm chia sẻ Thủ Thuật Hướng dẫn trong nội dung bài viết một cách Chi Tiết 2022. Nếu sau khi tìm hiểu thêm nội dung bài viết vẫn ko hiểu thì hoàn toàn có thể lại Comment ở cuối bài để Ad lý giải và hướng dẫn lại nha.


Số lần xuất hiện cực trị của hàm số trong đề thi trung học phổ thông vương quốc là quá nhiều. Bài viết dưới đây sẽ hướng dẫn tìm cực trị của hàm số một cách rõ ràng với tiến trình, kèm với nó là ví dụ minh họa có lời giải để bạn tiện theo dõi


Để tìm cực trị ta có 2 cách đó là dùng bảng biến thiên và biện luận đạo hàm cấp 2. Mời bạn cùng theo dõi


Nội dung chính


  • Số lần xuất hiện cực trị của hàm số trong đề thi trung học phổ thông vương quốc là quá nhiều. Bài viết dưới đây sẽ hướng dẫn tìm cực trị của hàm số một cách rõ ràng với tiến trình, kèm với nó là ví dụ minh họa có lời giải để bạn tiện theo dõi

  • Cách tìm cực trị của hàm số

  • Bài tập cực trị của hàm số có giải rõ ràng


  • Cách tìm cực trị của hàm số


    Cho hàm số y = f(x) có tập xác lập là K.


    Cách 1:


    cực trị của hàm số - toanhocorg


    Lưu ý: Dựa vào bảng biến thiên ta thấy


    • Tại những điểm mà đạo hàm đổi dấu từ âm (-) sang dương (+) thì đó là yếu tố cực tiểu của hàm số.

    • Tại những điểm mà đạo hàm đổi dấu từ dương (+) sang âm (-) thì đó là yếu tố cực lớn của hàm số.

    Cách 2:


    cực trị của hàm số - toanhocorg


    Lưu ý:


    • Tại điểm xi cho giá trịf(xi) < 0 thì điểm đó là cực lớn của hàm số.

    • Tại điểm xi cho giá trịf(xi) > 0 thì điểm đó là cực tiểu của hàm số.

    Bài tập cực trị của hàm số có giải rõ ràng


    Bài tập 1. (Trích câu 4 đề thi minh họa 2022 của BGD&ĐT) Cho hàm số $f(x)$ có bảng biến thiên như sau:
    cực trị của hàm số
    Điềm cực lớn của hàm số đã cho là:


    Xem thêm: Ứng dụng tích phân và 2 dạng bài tính diện tích s quy hoạnh phẳng năm 2022


    A.$x=-3$.


    B.$x=1$.


    C.$x=2$.


    D.$x=-2$.


    Hướng dẫn giải


    Chọn câu D


    Vì $f'(x)$ đổi dấu từ $+$ sang $-$ khi hàm số qua $x=-2$ nên $x_CD=-2.$


    Bài tập 2.Cho hàm số $y = x^3 3x^2 + 2$ . Khẳng định nào sau này là đúng?


    A.Hàm số đạt cực lớn tại x = 2 và đạt cực tiểu tại x = 0.


    B.Hàm số đạt cực tiểu tại x = 2 và đạt cực lớn x = 0.


    C.Hàm số đạt cực lớn tại x = 2 và cực tiểu tại x = 0.


    D. Hàm số đạt cực lớn tại x = 0và cực tiểu tại x = 2.


    Hướng dẫn giải


    Chọn B


    $y = 3x^2 6x = 0 Leftrightarrow left[ beginarrayl x = 0\ x = 2 endarray right.$


    Lập bảng biến thiên ta được hàm số đạt cực lớn tại $x = 2$ và đạt cực tiểu tại $x = 0$


    Bài tập 3. (Trích câu 5 đề thi minh họa 2022 của BGD&ĐT). Cho hàm số $f(x)$ có bảng xét dấu của đạo hàm $f^prime (x)$ như sau:
    tìm cực trị của hàm số
    Hàm số $f(x)$ có bao nhiêu điềm cực trị?


    A.4.


    B.1.


    C.2.


    D.3.


    Hướng dẫn giải


    Chọn câu A


    Ta thấy $f'(x)$ đổi dấu khi qua cả bốn số $x=-2,x=1,x=3,x=5$ nên chúng đều là những điểm cực trị của hàm số $f(x).$


    Bài tập 4. Cho hàm số $y = x^4 2x^2 + 3$ . Khẳng định nào sau này là đúng?


    A. Hàm số có ba điểm cực trị.


    B. Hàm số chỉ có đúng 2 điểm cực trị.


    C. Hàm số không còn cực trị.


    D. Hàm số chỉ có đúng một điểm cực trị.


    Hướng dẫn giải


    Chọn A


    $y = 4x^3 4x = 0 Leftrightarrow left[ beginarrayl x = 0\ x = 1\ x = 1 endarray right.$


    $y(0) = 3;text y(1) = y( 1) = 2$ nên hàm số có hai cực trị.


    Bài tập 5. Cho hàm số $y = x^3 + 17x^2 24x + 8$ . Kết luận nào sau này là đúng?


    Xem thêm: Cách chứng tỏ đường thẳng vuông góc với mặt phẳng


    A. $x_CD = 1.$


    B. $x_CD = frac23.$


    C. $x_CD = 3.$


    D. $x_CD = 12.$


    Hướng dẫn giải


    Chọn D


    $y = 3x^2 + 34x 24 = 0 Leftrightarrow left[ beginarrayl x = 12\ x = frac23 endarray right.$


    Lập bảng biến thiên ta thấy hàm số đạt cực lớn tại $x = 12$ .


    Bài tập 6. Trong những hàm số sau, hàm số nào đạt cực lớn tại $x = frac32$ ?


    A. $y = frac12x^4 x^3 + x^2 3x.$


    B. $y = sqrt x^2 + 3x 2 .$


    C. $y = sqrt 4x^2 12x 8 .$


    D. $y = fracx 1x + 2.$


    Hướng dẫn giải


    Chọn B


    Hàm số $y = sqrt x^2 + 3x 2 $ có $y = frac 2x + 32sqrt x^2 + 3x 2 $ và $y$ đổi dấu từ + sang – khi $x$ chạy qua


    $frac32$ nên hàm số đạt cực lớn tại .


    Dùng casio kiểm tra: $left{ beginarrayl yleft( frac32 right) = 0\ yleft( frac32 right) < 0 endarray right.$ thì hàm số đạt cực lớn tại 1,5 .


    Bài tập 7. Cho hàm số $y = x^7 x^5$ . Khẳng định nào sau này là đúng


    A. Hàm số có đúng 1 điểm cực trị.


    B. Hàm số có đúng 3 điểm cực trị .


    C. Hàm số có đúng hai điểm cực trị.


    D. Hàm số có đúng 4 điểm cực trị.


    Hướng dẫn giải


    Chọn C


    $y = 7x^6 5x^4 = x^4(7x^2 5) = 0 Leftrightarrow left[ beginarrayl x = 0\ x = pm sqrt frac57 endarray right.$ .


    $y$ chỉ đổi dấu khi $x$ chạy qua $ pm sqrt frac57 $ nên hàm số có hai điểm cực trị.


    Bài tập 8. (Trích câu 39 đề thi minh họa 2022 của BGD&ĐT). Cho hàm số $f(x)$, đồ thị của hàm số $y=f^prime (x)$ là đường cong trong hình bên. Giá trị lớn số 1 của hàm số $g(x)=f(2x)-4x$ trên đoạn $left[ -frac32;2 right]$ bằng
    bài tập trắc nghiệm cực trị của hàm số
    A.$f(0)$.


    Xem thêm: Tích vô vị trí hướng của hai vecto trong hệ tọa độ oxy và Oxyz


    B.$f(-3)+6$.


    C.$f(2)-4$.


    D.$f(4)-8$.


    Hướng dẫn giải


    Chọn câu C


    Đặt $2x=t$ thì $tin [-3;4]$ và ta đưa về xét $h(t)=f(t)-2t.$ Ta có $h'(t)=f'(t)-2$ nên nhờ vào đồ thị đã cho thì $h'(t)=0$ có hai nghiệm $t=0,t=2,$ trong số đó $f'(t)-2$ lại không đổi dấu khi qua $t=0,$ còn $h'(t)$ đổi dấu từ $+$ sang $-$ khi qua $t=2$


    Lập bảng biến thiên cho$h(t)$ trên $[-3;4],$ ta có $max h(t)=h(2)=f(2)-4.$


    Bài tập 9. (Trích câu 46 đề thi minh họa 2022 của BGD&ĐT). Cho $f(x)$ là hàm số bậc bốn thỏa mãn nhu cầu $f(0)=0$. Hàm số $f^prime (x)$ có bảng biến thiên như sau:


    cực trị của hàm số lớp 12


    Hàm số $g(x)=left| fleft( x^3 right)-3x right|$ có bao nhiêu điểm cực trị?


    A.3.


    B.5.


    C.4.


    D.2.


    Hướng dẫn giải


    Chọn câu A


    Ta có $f'(x)$ bậc ba có $2$ điểm cực trị là $x=-3,x=-1$ nên $f'(x)=a(x+3)(x+1).$


    Suy ra $f'(x)=a(fracx^33+2x^2+3x)+b$.


    Từ $f(-3)=-1$ và $f(-1)=-frac613,$ giải ra $a=frac292,b=-1$


    hay $f'(x)=frac292(fracx^33+2x^2+3x)-1.$


    Do đó $f'(0)=-1<0$


    Đặt $h(x)=f(x^3)-3x$ thì $h'(x)=3x^2f'(x^3)-3$ nên $h'(x)=0Leftrightarrow f'(x^3)=frac1x^2.$$(*)$


    Trên $(-infty ;0)$ thì $f'(x)<0$ nên $f'(x^3)<0,forall x<0$,kéo theo $(*)$ vô nghiệm trên $(-infty ;0].$


    Xét $x>0$ thì $f'(x)$ đồng biến còn $frac1x^2$ nghịch biến nên $(*)$ có không thật $1$ nghiệm.


    Lại có $undersetxto 0^+mathoplim ,(f'(x^3)-frac1x^2)=-infty $ và $undersetxto +infty mathoplim ,(f'(x^3)-frac1x^2)=+infty $ nên $(*)$ có đúng nghiệm $x=c>0.$


    Xét bảng biến thiên của $h(x)$:


    trắc nghiệm cực trị của hàm số


    Vì $h(0)=f(0)=0$ nên $h(c)<0$ và phương trình $h(x)=0$ có hai nghiệm thực phân biệt,khác $c.$


    Từ đó $left| h(x) right|$ sẽ có được $3$ điểm cực trị


    Hy vọng qua nội dung bài viết này bạn đã biết phương pháp tìm cực lớn của hàm số hay cực tiểu của hàm số. Mọi vướng mắc hay để lại phản hồi phía dưới để toanhoc.org giải đáp. Đừng quên quay trở lại trang Toán Học để tiếp xem những bài tiếp theo nhé!


    Reply

    3

    0

    Chia sẻ


    Share Link Cập nhật Cách tìm số điểm cực lớn của hàm số miễn phí


    Bạn vừa Read tài liệu Với Một số hướng dẫn một cách rõ ràng hơn về Review Cách tìm số điểm cực lớn của hàm số tiên tiến và phát triển nhất Share Link Cập nhật Cách tìm số điểm cực lớn của hàm số Free.


    Giải đáp vướng mắc về Cách tìm số điểm cực lớn của hàm số


    Nếu sau khi đọc nội dung bài viết Cách tìm số điểm cực lớn của hàm số vẫn chưa hiểu thì hoàn toàn có thể lại Comment ở cuối bài để Admin lý giải và hướng dẫn lại nha

    #Cách #tìm #số #điểm #cực #đại #của #hàm #số

Đăng nhận xét